The Sample Complexity and Computational Complexity of Boolean Function Learning

نویسنده

  • Martin Anthony
چکیده

This report surveys some key results on the learning of Boolean functions in a probabilistic model that is a generalization of the well-known ‘PAC’ model. A version of this is to appear as a chapter in a book on Boolean functions, but the report itself is relatively self-contained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning by Refuting

The sample complexity of learning a Boolean-valued function class is precisely characterized by its Rademacher complexity. This has little bearing, however, on the sample complexity of efficient agnostic learning. We introduce refutation complexity, a natural computational analog of Rademacher complexity of a Boolean concept class and show that it exactly characterizes the sample complexity of ...

متن کامل

On Boolean Combinations of Definitive Classifiers

We consider the sample complexity of concept learning when we classify by using a fixed Boolean function of the outputs of a number of different classifiers. Here, we take into account the ‘margins’ of each of the constituent classifiers. A special case is that in which the constituent classifiers are linear threshold functions (or perceptrons) and the fixed Boolean function is the majority fun...

متن کامل

Agnostic Learning by Refuting∗

The sample complexity of learning a Boolean-valued function class is precisely characterized by its Rademacher complexity. This has little bearing, however, on the sample complexity of efficient agnostic learning. We introduce refutation complexity, a natural computational analog of Rademacher complexity of a Boolean concept class and show that it exactly characterizes the sample complexity of ...

متن کامل

Multi-instance learning with any hypothesis class

In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags of instances, and the bag label is a function of the labels of its instances. Typically, this function is the Boolean OR. The learner observes a sample of bags and the bag labels, but not the instance labels that determine the bag labels. The learner is then required to emit a classification rule f...

متن کامل

Learning Boolean functions with concentrated spectra

This paper discusses the theory and application of learning Boolean functions that are concentrated in the Fourier domain. We first estimate the VC dimension of this function class in order to establish a small sample complexity of learning in this case. Next, we propose a computationally efficient method of empirical risk minimization, and we apply this method to the MNIST database of handwrit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002